Want to see ALL questions on this topic?

Upgrade to PLUS+ for €35 to see all past questions

You need to have an account to continue

You need to have an account to continue

Latest Videos & Notes Suggest Videos or Notes

Pick a topic
All
Videos
Websites
Notes
143 Videos & Notes
  • Lazarus & Folkman Transactional model of stress & coping - VCE Psychology
    This clip gives an overview of the Transactional model; including the primary & secondary appraisal; problem & emotion-based coping as well as strengths and weaknesses of the model.
    read more
  • Types and Causes of Stress
    This toon shows the two main types of stress and investigates the main causes of stress
    read more
  • Stress and The General Adaptation Syndrome
    If you have any recommendations for future videos, please leave me a comment below with your request! :) Created to receive bonus credit for PS263 Biopsychology at Wilfrid Laurier University Correction Notice: The researcher who developed the General Adaptation Syndrome is named Hans Selye (not Hans Style).
    read more
  • Lazarus & Folkman Transactional model of stress & coping - VCE Psychology
    This clip gives an overview of the Transactional model; including the primary & secondary appraisal; problem & emotion-based coping as well as strengths and weaknesses of the model.
    read more
  • Neuroplasticity
    The Sentis Brain Animation Series takes you on a tour of the brain through a series of short and sharp animations. The fourth in the series explains how our most complex organ is capable of changing throughout our lives. This inspiring animation demonstrates how we all have the ability to learn and change by rewiring our brains. Who is Sentis? We are a global team assisting individuals and organisations change their lives for the better. The human mind is our focus and we believe the mind is an individual's most important performance tool. We are the world leaders in the application of psychology and neuroscience to safety, leadership development, and wellbeing in the workplace. Find out more at http://www.sentis.com.au/ If you could like to discuss how we can create animation and video as part of a tailored training program for your organisation contact us today. http://www.sentis.com.au/contact/
    read more
  • 2-Minute Neuroscience: Glutamate
    Glutamate is the primary excitatory neurotransmitter of the human nervous system. It is an amino acid neurotransmitter that interacts with both ionotropic and metabotropic receptors. There are 3 identified ionotropic glutamate receptors: NMDA, AMPA, and kainate receptors, and 3 identified metabotropic glutamate receptors. Glutamate is removed from the synaptic cleft by excitatory amino acid transporters, or EAATs. Glutamate that is transported into glial cells is converted to glutamine before being sent back to the neuron to be converted back to glutamate, a process referred to as the glutamate-glutamine cycle. TRANSCRIPT: Welcome to 2 minute neuroscience, where I explain neuroscience topics in 2 minutes or less. In this installment I will discuss glutamate. Glutamate is an amino acid that also functions as a neurotransmitter. Although glutamate is obtained through the diet, it cannot pass the blood-brain barrier and thus must be synthesized in the brain. It can be synthesized from alpha ketoglutarate, an intermediate product in the citric acid cycle. Glutamate generally has excitatory actions, meaning that when it interacts with the receptors of a neuron it makes that neuron more likely to fire an action potential. It is, in fact, used at the vast majority of excitatory connections in the brain and at more than half of all synapses in the brain. Glutamate interacts with several different types of receptors. There are 3 identified ionotropic glutamate receptors, named for substances that activate them: NMDA, AMPA, and kainate receptors. When activated, all 3 allow positively charged sodium ions to flow into a postsynaptic neuron, depolarizing the neuron and making it more likely to fire an action potential. NMDA receptors have unique characteristics that make them well-suited to be involved in synaptic plasticity, or synaptic changes that occur in response to experience, which are an important component of learning and memory. There are also 3 identified types of metabotropic glutamate receptors. These receptors have more varied effects than ionotropic glutamate receptors, and may be involved with excitatory or inhibitory actions. Glutamate is removed from the synaptic cleft by a class of transporter proteins called the excitatory amino acid transporters, or EAATs. EAATs carry glutamate into neurons and glial cells. Glutamate taken into glial cells is converted to the amino acid glutamine by the enzyme glutamine synthetase. Glutamine is then transported back into neurons, where it is converted back to glutamate. This process is referred to as the glutamate-glutamine cycle. Reference: Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, White LE. Neuroscience. 4th ed. Sunderland, MA. Sinauer Associates; 2008.
    read more
  • 2-Minute Neuroscience: GABA
    In this video I discuss the neurotransmitter gamma-aminobutyric acid, or GABA. GABA is the primary inhibitory neurotransmitter in the human nervous system; its effects generally involve making neurons less likely to fire action potentials or release neurotransmitters. GABA acts at both ionotropic (GABAa) and metabotropic (GABAb) receptors, and its action is terminated by a transporter called the GABA transporter. Several drugs like alcohol and benzodiazepines cause increased GABA activity, which is associated with sedative effects. TRANSCRIPT: Welcome to 2 minute neuroscience, where I simplistically explain neuroscience topics in 2 minutes or less. In this installment I will discuss gamma-aminobutyric acid, or GABA. Although GABA’s primary functions are as a neurotransmitter, it has the structure of an amino acid and thus is referred to as an amino acid neurotransmitter. It is synthesized from another amino acid neurotransmitter, glutamate, in a reaction catalyzed by the enzyme glutamic acid decarboxylase. The function of GABA changes over the course of neural development, but in the mature brain it acts primarily as an inhibitory neurotransmitter; in other words when GABA interacts with the receptors of a neuron, it generally makes the neuron less likely to fire an action potential or release neurotransmitters. There are two types of receptors GABA interacts with, GABAa and GABAb receptors. GABAa receptors are ionotropic receptors. When GABA binds to the GABAa receptor, it causes the opening of an associated ion channel that is permeable to the negatively charged ion chloride. When negative chloride ions flow into the neuron, they hyperpolarize the membrane potential of the neuron and make it less likely the neuron will fire an action potential. GABAb receptors are metabotropic (or g-protein coupled) receptors; when activated they frequently cause the opening of potassium channels. These channels allow positively charged potassium ions to flow out of the neuron, again making the neuron hyperpolarized and less likely to fire an action potential. The actions of GABA are terminated by proteins called GABA transporters, which transport GABA from the synaptic cleft into neurons or glial cells where it is degraded primarily by mitochondrial enzymes. Because GABA can reduce neural transmission, increased GABA activity can have sedative effects. Accordingly, a number of drugs that have such effects, like alcohol and benzodiazepines, increase activity at the GABA receptor.
    read more
  • Neuroplasticity | Nervous system physiology | NCLEX-RN | Khan Academy
    Our mission to provide a world-class education for anyone, anywhere. All Khan Academy content is available for free at www.khanacademy.org.
    read more
  • Alzheimer's disease - plaques, tangles, causes, symptoms & pathology
    What is Alzheimer's disease? Alzeimer's (Alzheimer) disease is a neurodegenerative disease that leads to symptoms of dementia. Progression of Alzheimer's disease is thought to involve an accumulation of beta-amyloid plaque and neurofibrillary tangles in the brain. Find more videos at http://osms.it/more. Hundreds of thousands of current & future clinicians learn by Osmosis. We have unparalleled tools and materials to prepare you to succeed in school, on board exams, and as a future clinician. Sign up for a free trial at http://osms.it/more. Subscribe to our Youtube channel at http://osms.it/subscribe. Get early access to our upcoming video releases, practice questions, giveaways, and more when you follow us on social media: Facebook: http://osms.it/facebook Twitter: http://osms.it/twitter Instagram: http://osms.it/instagram Our Vision: Everyone who cares for someone will learn by Osmosis. Our Mission: To empower the world’s clinicians and caregivers with the best learning experience possible. Learn more here: http://osms.it/mission Medical disclaimer: Knowledge Diffusion Inc (DBA Osmosis) does not provide medical advice. Osmosis and the content available on Osmosis's properties (Osmosis.org, YouTube, and other channels) do not provide a diagnosis or other recommendation for treatment and are not a substitute for the professional judgment of a healthcare professional in diagnosis and treatment of any person or animal. The determination of the need for medical services and the types of healthcare to be provided to a patient are decisions that should be made only by a physician or other licensed health care provider. Always seek the advice of a physician or other qualified healthcare provider with any questions you have regarding a medical condition.
    read more
  • Neurodegenerative Disease Overview
    http://armandoh.org/ https://www.facebook.com/ArmandoHasudungan Support me: http://www.patreon.com/armando Instagram: http://instagram.com/armandohasudungan Twitter: https://twitter.com/Armando71021105 SPECIAL THANKS: Patreon members
    read more
  • Parkinson's disease - causes, symptoms, diagnosis, treatment & pathology
    What is Parkinson's disease? Parkinson's is a disease that affects the nervous system and causes a variety of movement symptoms. Find our complete video library only on Osmosis Prime: http://osms.it/more. Hundreds of thousands of current & future clinicians learn by Osmosis. We have unparalleled tools and materials to prepare you to succeed in school, on board exams, and as a future clinician. Sign up for a free trial at http://osms.it/more. Subscribe to our Youtube channel at http://osms.it/subscribe. Get early access to our upcoming video releases, practice questions, giveaways, and more when you follow us on social media: Facebook: http://osms.it/facebook Twitter: http://osms.it/twitter Instagram: http://osms.it/instagram Our Vision: Everyone who cares for someone will learn by Osmosis. Our Mission: To empower the world’s clinicians and caregivers with the best learning experience possible. Learn more here: http://osms.it/mission Medical disclaimer: Knowledge Diffusion Inc (DBA Osmosis) does not provide medical advice. Osmosis and the content available on Osmosis's properties (Osmosis.org, YouTube, and other channels) do not provide a diagnosis or other recommendation for treatment and are not a substitute for the professional judgment of a healthcare professional in diagnosis and treatment of any person or animal. The determination of the need for medical services and the types of healthcare to be provided to a patient are decisions that should be made only by a physician or other licensed health care provider. Always seek the advice of a physician or other qualified healthcare provider with any questions you have regarding a medical condition.
    read more
  • What is Parkinson's disease? | Nervous system diseases | NCLEX-RN | Khan Academy
    Our mission to provide a world-class education for anyone, anywhere. All Khan Academy content is available for free at www.khanacademy.org.
    read more
  • Trans-Theoretical Model of Behaviour Change
    A short ePresentation introducing the trans-theoretical model of behaviour change. Produced by Nathan Smith With support from the University of Birmingham Voice over: Thom Udall Illustration: Kelsey Heinrichs
    read more